Mining RNA–Seq Data for Infections and Contaminations

نویسندگان

  • Thomas Bonfert
  • Gergely Csaba
  • Ralf Zimmer
  • Caroline C. Friedel
چکیده

RNA sequencing (RNA-seq) provides novel opportunities for transcriptomic studies at nucleotide resolution, including transcriptomics of viruses or microbes infecting a cell. However, standard approaches for mapping the resulting sequencing reads generally ignore alternative sources of expression other than the host cell and are little equipped to address the problems arising from redundancies and gaps among sequenced microbe and virus genomes. We show that screening of sequencing reads for contaminations and infections can be performed easily using ContextMap, our recently developed mapping software. Based on mapping-derived statistics, mapping confidence, similarities and misidentifications (e.g. due to missing genome sequences) of species/strains can be assessed. Performance of our approach is evaluated on three real-life sequencing data sets and compared to state-of-the-art metagenomics tools. In particular, ContextMap vastly outperformed GASiC and GRAMMy in terms of runtime. In contrast to MEGAN4, it was capable of providing individual read mappings to species and resolving non-unique mappings, thus allowing the identification of misalignments caused by sequence similarities between genomes and missing genome sequences. Our study illustrates the importance and potentials of routinely mining RNA-seq experiments for infections or contaminations by microbes and viruses. By using ContextMap, gene expression of infecting agents can be analyzed and novel insights in infection processes and tumorigenesis can be obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Function of Predicted Proteins from RNA-Seq Data in Holstein and Cholistani Cattle Breeds

This study was performed to determine the digital expression profile of different genes expressed in Holstein and Cholistani breeds as well as to evaluate the performance of predicted proteins derived from differentially expressed genes between these two breeds using RNA-Seq data. For this purpose, the whole mRNA sequence for a blood sample of American Holstein and Pakistani Cholistani cattle p...

متن کامل

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

Biological classification with RNA-Seq data: Can alternative splicing enhance machine learning classifier?

The extent to which the genes are expressed in the cell can be simplistically defined as a function of one or more factors of the environment, lifestyle, and genetics. RNA sequencing (RNA-Seq) is becoming a prevalent approach to quantify gene expression, and is expected to gain better insights to a number of biological and biomedical questions, compared to the DNA microarrays. Most importantly,...

متن کامل

A Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data

Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013